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Chapter 5

Measurement of B mesons lifetimes

Having collected the data samples of B meson decays, their description in the mass and

proper decay time spaces is achieved, and the B mesons lifetimes extracted.

5.1 Fitting technique

We develop a fitting framework based on the maximum likelihood estimation method, which

we use to extract the parameters of interest from the B data samples. It is implemented

in an unbinned fashion, where the input information provided directly to the fitter is that

pertaining to the individual B meson candidates (these will be referred to as events). The

unbinned likelihood description allows exploring more thoroughly the information contained

in the data samples.

5.1.1 Maximum likelihood

The likelihood function L is a measure for the probability of observing the data set at hand,

characterized by measurements t = {ti}, given the parameters τ= {τj}. It is defined here

as the joint probability density for the independent measurements t as a function of the

parameters τ ,

L(t|τ ) =
∏

{ti}

P(ti|τ ) . (5.1)

The model parameters τ are varied, and their best estimates, denoted by fitted parameter

values, correspond to the set which maximizes L. This is implemented using the minimization

program Minuit [72, 73], provided with the score function −2 ln(L).
In case a fit to a common set of parameters is to be performed simultaneously to several

B samples {s}, the product of the likelihoods Ls of individual samples is formed, and the
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quantity to be minimized then becomes

− 2
∑

{s}

ln (Ls) . (5.2)

The necessary normalization of the underlying probability density function,
∫
Pdt = 1,

for each event, is implemented analytically, resulting in an optimization of the fitter speed

and accuracy.

A given candidate has certain probabilities of belonging to the different components which

form the sample being fit. The event likelihood is thus formed of terms describing these

various components. In general, these contain the signal and background classes. Signal refers

to those sample components the model description of which involve directly the parameters

of interest. For the background components it is sufficient in general to provide an empirical

description of the corresponding distributions. Denoting by fB the fraction of background,

and by (1− fB) the fraction of signal, the likelihood becomes

L =
∏

i

[
(1− fB) · PS

i + fB · PB
i

]
(5.3)

where PS
i and PB

i denote the signal and background likelihood components, evaluated for

the i-th candidate.

More generally, the signal and background classes may be both formed of distinct com-

ponents, which benefit from separate treatment in the likelihood model. The candidates

forming such components may belong to one of the following categories:

• The nominal signal, where all tracks forming the candidate were correctly reconstructed

as the B daughter particles of the decay channel being reconstructed.

• Partially reconstructed b-hadrons, where some tracks have not been reconstructed, or

the decay products contain neutral particles.

• Misidentified tracks, where a particle has been wrongly reconstructed due to mis-

identification of a track with a lepton, pion, kaon, or proton.

• Misreconstructed B-decays, where, although the tracks have been assigned the correct

masses, the resulting particles did not originate from the B decay being reconstructed.

• The combinatorial background, corresponding to other track combinations with an

invariant mass lying in the mass fitting region.

The various specific components which contribute to each of the samples being fit have been

identified in Section 4.3.
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Each sample component is assigned corresponding PDFs in the spaces of the input vari-

ables. The likelihood is then formed of the joint PDFs, Pα, obtained for each component,

L =
∏

i

∑

α

fαPα
i , (5.4)

where the indices i,α run over the number of events and number of sample components,

respectively, and fα denote the component fractions, with
∑

α fα = 1.

While nominal signal and combinatorial background are in general the dominant contri-

butions, in the following paragraphs we identify the specific realizations also of the other

categories in our data samples.

5.1.2 Fit input variables

The quantities which serve as input to the fit include the mass, the proper decay time, and

the proper decay time resolution of the reconstructed B candidates. These variables are

introduced in the following, and will be denoted by the lower-case symbols m, t and σt,

respectively.

Proper decay time

The principal measurements performed in this dissertation correspond to parameters which

determine the distribution of the reconstructed proper decay time of B meson candidates.

This quantity is related to the observed B candidate decay distance, and is defined as

t ≡ Lxy
MB

pT
. (5.5)

Here pT is the transverse momentum of the reconstructed system. Lxy is the projection on

the direction of the transverse momentum pT of the displacement vector in the transverse

plane, $d, from the B meson production vertex to the its decay vertex,

Lxy = $d · $pT|pT |
. (5.6)

The world average value for the mass of the involved B meson, MB, is used in the definition

of t. For the signal PDF the fit estimate of the B mass is not used because it would introduce

unnecessary uncertainties in the determination of t.

In case of fully reconstructed signal candidates, t is identified with the proper decay time

of the B meson, t = tB,

tB =
LB

βγ
= LBMB

pB
= LB

xy

MB

pBT
, (5.7)
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where L, β, and γ are the flight distance, velocity, and Lorentz boost factor of the B candi-

date.

For partially reconstructed decays, the B transverse momentum pBT , and thereby the

B proper decay time tB, cannot be measured. For example, the neutrino from the decay

B → Dlν is not detected. In these cases t is sometimes also referred to as pseudo-proper

decay time of the B candidate, and differs from tB by a kinematic correction factor relating

the B and Dl systems, tB = t · κ, defined by

κ =
LB
xy

LDl
xy

pDl
T

pBT
. (5.8)

An average distribution, F(κ) , for the κ-factor is obtained from Monte Carlo simulation,

and this is a necessary ingredient when forming the signal PDF.

We will generally refer to the measured quantity t as proper decay time, while the prefix

pseudo should be implicit for decays which are not completely reconstructed. Although t does

not have a specific meaning for background components, it remains a well defined quantity,

and is employed in both signal and background PDFs.

Proper decay time resolution

The detector resolution and track fitting methods imply a finite precision for the measurement

of the B decay-length, σLxy , and therefore in the determination of the proper decay time t,

σt = σLxy ·
MB

pT
. (5.9)

Contributions to the proper time resolution associated to uncertainties on the reconstructed

transverse momentum and on the world average B masses are negligible. This information

ought to be included in the relevant PDFs for the signal. Indeed, the proper decay time

resolution is a determining factor in the Bs mixing analysis when attempting to resolve

rapid, time dependent oscillations.

An additional complication arises from the fact that the uncertainty returned by the

vertex fitter is in general underestimated, arising from the complexity of describing the track

hit uncertainties. This requires a correcting scale factor to be applied,

σt &→ St · σt . (5.10)

This scale factor St is extracted directly from the data samples, as a fit parameter adjusting

the Gaussian width describing a prompt component in the proper decay time distribution.

However, such a prompt contribution is only present in J/ψK modes, and is suppressed by
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the trigger selection in the other B samples. In those t biased samples of B+ and B0 decays

a common average value for St is used. A more detailed study is performed in Section 5.7,

in anticipation to the study of Bs oscillations, where the proper time uncertainty becomes

a critical issue. In samples of Bs meson decays the scale factor St has an event dependent

value, computed as described therein.

Mass

The inclusion of the reconstructed candidate mass, m, is crucial for separating signal from

background components, and corresponding PDFs are included in the likelihood description.

In fully reconstructed decays it is the mass of the B candidate which is provided as input

to the fit. For partially reconstructed decays, one uses instead the mass of the D meson

candidate, as the B momentum is not completely reconstructed.

Although the B, or D, meson masses, M , will be parameters of the fit, the corresponding

fit results for M should not be taken as definite measurements, the relevant systematic effects

not being evaluated. We do not include the uncertainty on the candidate mass determination

in the likelihood description.

5.1.3 Likelihood factors

The distributions of the fit input variables presented in the previous section – m, t, σt – are

described by likelihood factors, which for each sample component (e.g. signal, backgrounds)

are given by

P = Lm Lt Lσt . (5.11)

The mass and proper time spaces are disjoint, and the corresponding probabilities multiply.

The probability density for the proper time, t, depends on the smearing effect determined by

the resolution σt. The factorization (5.11) is then

P(m, t, σt) = P(m) · P(t, σt) = P(m) · P(t|σt) · P(σt). (5.12)

These factors are the probability density functions of the corresponding argument variables,

and are thus unit normalized
∫

Lm dm =

∫
Lt dt =

∫
Lσt dσt = 1 .

The forms of the PDFs for mass and proper time, Lm and Lt, are given in the sections

below in terms of the fitting parameters. The σt factor is obtained directly from data as

follows: for the background, LB
σt is given by the σt distribution for events in the mass side-

band region; for signal events, LS
σt corresponds to the normalized σt distribution obtained for
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Figure 5.1: Distributions of calibrated proper decay time resolution σt, for signal and back-

ground events, for the main hadronic (left) and semileptonic (right) Bs decay modes.

candidates in the mass signal region, after mass side-band subtraction. These distributions

are illustrated in Figure 5.1 for the indicated modes.

The components contributing to each sample are identified in Section 4.3 and summarized

in Table 5.1. Separate likelihood terms as in (5.11) have to be provided for each component.

signal background

J/ψK B+, B0 combinatorial, Cabibbo-suppressed, K∗ swap

Dπ(ππ) B+, B0, Bs combinatorial, Cabibbo-suppressed, fully and partially rec.

Dl B+/B0, Bs combinatorial, physics, fakes

Table 5.1: Summary of data sample component categories, from Section 4.3.

5.2 Proper time likelihood formalism for signal

The proper decay time distribution for the signal is formed of an exponential decay char-

acterized by the B meson lifetime τ , smeared by the detector resolution, and corrected by

possible trigger, selection, and partial reconstruction effects.
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5.2.1 Fully reconstructed and unbiased proper time

The expected true proper decay time follows an exponential decay form

E(t; τ) =
1

τ
e−

t
τ θ(t) =

{
0, t < 0
1
τ e

− t
τ , t ≥ 0

(5.13)

determined by the B meson lifetime, τ . The semicolon is used here to separate the main

function argument from its parameters. The finite vertex resolution, described by a Gaussian

function, induces the smearing of the expected proper time. The width of the resolution

function is given by the measured proper time uncertainty for the individual event,

G(t; σt) =
1√
2πσt

e
− t2

2σ2
t . (5.14)

The observable t is given by the sum of the true proper decay time (5.13) with the effect

(jitter) of the detector resolution (5.14). The resulting PDF for t is accordingly given by the

convolution of the two distributions,

L(t|σt, τ) = E(t; τ)⊗G(t; σt)

=

∫ ∞

−∞

1

τ
e−t′/τθ(t′) · 1√

2πσt
e
− (t−t′)2

2σ2
t dt′

=
1

2τ
e−

1
τ (t−

σ2
t

2τ ) · Erfc
(
σ2
t − tτ√
2σtτ

)
(5.15)

The complementary error function, Erfc(z) ≡ 2√
π

∫∞
z e−u2

du, has been employed. That (5.15)

has unit normalization follows from the fact that the normalization of the convolution of a

function with a Gaussian coincides with the normalization of the function itself,
∫ +∞

−∞
f(t)⊗G(t)dt =

∫ +∞

−∞
f(t′)

∫ +∞

−∞
G(t− t′)dt dt′ =

∫ +∞

−∞
f(t′)dt′ . (5.16)

5.2.2 Fully reconstructed and biased proper time

Certain selection cuts, applied at either event triggering or reconstruction levels, may affect

the expected proper time distribution, causing deviations from the shape given by (5.15).

For example, suppose a selection level threshold is applied directly to the proper time,

t > t0. Or, as it is most often the case, that such a cut is applied to the B meson decay-length

or its significance, Lxy/σLxy > α. This translates again to applying a selection directly on

the proper time, t > tα, where for each event the threshold is given by tα = α ·
(
σLxy

mB
pT

)
.

We note that such selection criteria are based on reconstructed, thus smeared, observables.

The PDF becomes

L(t|σt, τ, tα) =
1

N
· 1

2τ
e−

1
τ (t−

σ2
t

2τ ) · Erfc
(
σ2
t − tτ√
2σtτ

)
· θ(t− tα) , (5.17)
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where the step function, θ(t), directly implements the selection t > tα. A normalization

factor, N , needs now to be evaluated, and this computation is to be performed for the

individual events. For the case at hand, an analytical integration of (5.17) gives

N (σt, τ, tα) =
1

2

[
e−

1
τ (tα−

σ2
t

2τ ) · Erfc
(
σ2
t − tατ√
2σtτ

)
+ Erfc

(
tα√
2σt

)]
. (5.18)

We have thus seen that in case a selection cut is imposed on an observable directly related

to the proper decay time t, the effect on the PDF can be implemented through multiplication

with an acceptance function, E(t), which in those cases is simply a step function, E(t) = θ(t),

centered at the corresponding cut value for each event. More generally, however, there are

cuts which are not expressed as simple threshold conditions on t. The track impact parameter

criterion is an example of such a cut. In these more complex cases, the sculpting effect on

the proper time PDF can be described in a similar fashion,

L(t|σt, τ) =
1

N · [ E(t; τ)⊗G(t; σt) ] · E(t)

=
1

N · 1

2τ
e−

1
τ (t−

σ2
t

2τ ) · Erfc
(
σ2
t − tτ√
2σtτ

)
· E(t) (5.19)

via an efficiency function, E(t). The normalization factor

N (σt, τ) =

∫ ∞

−∞

1

2τ
e−

1
τ (t−

σ2
t

2τ ) · Erfc
(
σ2
t − tτ√
2σtτ

)
· E(t) dt (5.20)

needs as before to be evaluated for each single event.

5.2.3 Partially reconstructed and biased proper time

For cases where the B meson is not fully reconstructed, the measured input observable t is

related to the B meson proper decay time through a kinematical factor, obtained from Monte

Carlo simulation. For semileptonic decays, such κ-factor has been defined in (5.8).

In this case, the original lifetime exponential of (5.13) takes the form

E ′(t; τ) = E(t; τ)⊗κ F(κ) =

∫
κ

τ
e−

κt
τ θ(κt) · F(κ) dκ (5.21)

where F(κ) is the normalized κ-factor distribution, and the κ-factor smearing operator ⊗κ

is defined by the second equality. In a similar fashion, the final PDF becomes

L(t|σt, τ) =
1

N
· [ E(t; τ)⊗κ F(κ)⊗G(t; σt) ] · E(t) (5.22)

=
1

N
·
∫

κ

2τ
exp

(
−κ
τ
(t− κσ2

t

2τ
)

)
· Erfc

(
κσ2

t − tτ√
2σtτ

)
· F(κ) dκ · E(t) .
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The construction of the efficiency function, E(t) , is specified in a later section, as is the

evaluation of the normalization factor

N (σt, τ) =

∫ [∫ +∞

−∞
e−

κ
τ t Erfc

(
κσ2

t − tτ√
2σtτ

)
E(t) dt

]
· κ
2τ

exp

(
κ2σ2

t

2τ 2

)
· F(κ) dκ .

(5.23)

which needs to be performed for each event.

5.3 Describing trigger and reconstruction effects on proper

time

The shape of the proper decay time distribution of a sample is potentially affected by trigger

and reconstruction selection criteria. Such effects need to be incorporated into the relevant

PDFs, along with the physics and resolution contributions. This is achieved by introducing

an appropriate efficiency function, E(t), which multiplies the proper time signal PDF. Here

we show how such functions are constructed, based on Monte Carlo simulation of the involved

B decays, in which full detector effects, trigger, and offline selection are incorporated. The

construction of the κ-factor distribution, necessary for partially reconstructed modes, is also

presented.

5.3.1 The t-efficiency function

The t-efficiency function is defined as a function of the reconstructed proper decay time.

This is appropriate as the selection criteria whose effect is to be described are themselves

applied to reconstructed observables. An efficiency function defined in terms of un-smeared

quantities is not compatible with a straightforward implementation of the t-resolution in the

PDF [74].

The efficiency function E(t) relates the proper time distribution of a sample of events

obtained with the given selection criteria, to the corresponding proper time distribution

of the sample without the bias introduced by the selection. Indeed, it is constructed as

the ratio of such two distributions. Specifically, the biased distribution is obtained directly

from Monte Carlo simulation, where the description of the full biasing selection is included.

And the denominator, describing the corresponding unbiased distribution, is obtained in

an analytical fashion: the lifetime exponential smeared with the t-resolution, also obtained

from the same Monte Carlo sample. That is, the t-efficiency function is given, for fully
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reconstructed decays, by

E(t) =
t−distribution after selection∑

{σt}
1
τ e

−t/τ ⊗G(t; σt)
. (5.24)

The parameter τ denotes the B+, B0 or Bs, as appropriate, lifetime value, identical to that

used in the simulation from which the numerator is constructed [1]. The sum is weighted

over the reconstructed proper time uncertainty distribution of the Monte Carlo simulated

events. Figure 5.2 illustrates the t-efficiency distributions obtained for two selected hadronic

modes.

For partially reconstructed decays a similar definition as in (5.24) is employed

E(t) =
t−distribution after selection∑
{σt}

1
τ e

−t/τ ⊗G(t; σt)⊗κ F(κ)
(5.25)

where the smearing with the κ-factor distribution F(κ)has been included in the construction

of the unbiased distribution.

A t-efficiency function is constructed for each of the B mesons whose semileptonic decay

channels contribute to a given sub-sample. This is done based on an inclusive Monte Carlo

simulation containing all relevant channels. Figure 5.3 illustrates the t-efficiency distributions

obtained for selected decay Dl sub-samples. These reflect the distinct pseudo proper time

distributions which characterize the samples of B and D trigger types. For candidates for

which the B-daughter lepton is not a trigger track (D trigger type) the t distribution is

accordingly not suppressed as much by the trigger at low pseudo proper times.

We note that an overall scaling σt &→ r · σt is applied, in the definitions (5.24) and (5.25)

above, to the reconstructed proper time uncertainties of the Monte Carlo events. The factor

r is the Gaussian width of the distribution (treconstructed − ttrue)/σt, obtained from the Monte

Carlo sample, and its numerical value is about 1.1.

5.3.2 The κ -factor distribution

The distribution F(κ)of κ-factors (5.8) is constructed for each B meson type present in each

of the 24 Dl decay sub-samples from an inclusive Monte Carlo sample.

The κ-factor distribution is correlated to the mass of the Dl system, mDl. Indeed, the

fraction of the B momentum which is reconstructed, quantified by the κ-factor, tends to

be larger for candidates with larger mDl. That is, for candidates with mDl close to the B

mass, not much momentum could have been carried away. Most importantly, such events

tend to contribute a reduced spread for F(κ) as the phase space available for the missing

neutrino, and additional non-reconstructed particles, is also reduced. This is shown explicitly
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Figure 5.2: t-efficiency distribution and fitted function E(t)for the fully reconstructed B+ →
D̄0π+ (left) and Bs → D−

s [φπ
−]π+ (right) decay channels
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Figure 5.3: t-efficiency distribution and fitted function E(t)for the partially reconstructed

B0 → D−µ+X channels, for B trigger (left) and D trigger (right) type candidates.

in Figure 5.4. We exploit these dependences in the case of the Dsl samples, by assigning

separate κ-factor distributions depending on the candidate’s mDsl. Specifically the following
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ranges are used:

mDsl ∈ [1.0, 3.0], [3.0, 3.5], [3.5, 4.0], [4.0, 4.5], [4.5, 5.3] GeV/c2 .

This classification is performed in view of the expected increased significance resulting from

the better characterization of the κ-factor resolution of the candidates.

5.3.3 PDF normalization factor

We now address how the evaluation of the necessary PDF normalization factors, which have

been defined in (5.20) and (5.23), is performed. We recall that these depend not only on

fitting parameters, such as τ , but also on properties of the event, such as σt. Accordingly, the

computation of these quantities needs to be performed at each iteration step of the fit, and

for each event. The time required by the fit convergence process becomes a serious issue that

needs to be addressed. We derive a convenient parameterization of the t-efficiency function

which will allow us to perform an analytical integration in t of the PDFs in (5.19) and (5.22).

A given shape can in general be approximatively described by a number of templates. For

example, in the rational approximation a shape is described by the ratio of two polynomi-

als of certain degrees. Here however we are interested in finding simpler parameterizations,

which will render the normalization integral feasible, by adding the least complexity to the

remaining part of the PDF (to be multiplied by the t-efficiency itself). This reasoning leads

to considering the class of functions represented by the basis {tne−t/τn}, resulting in a pa-
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rameterization of the t-efficiency function involving terms of the following type

E(t) ∼
∑

n

an tn e−
t
τn θ(t− ζn). (5.26)

We perform a fit to the t-efficiency curve defined for the t-biased modes, using a combi-

nation of templates of the form given in (5.26) up to second order, to determine the involved

parameters {an, τn, ζn}. The following explicit forms are found convenient for the Dπ(ππ)

and Dl modes, respectively:

E(t) =






∑2
j=0 aj(t− ζj)2e

− t
τj θ(t− ζj) (hadronic)

(a0 + a1 t+ a2 t2)
(
f e−

t
τ1 + (1− f) e−

t
τ2

)
θ(t− ζ) (semileptonic)

.

The fits to the t-efficiency curves are illustrated in Figure 5.2 for selected hadronic channels,

and in Figure 5.3 for semileptonic modes where it can be seen that the latter expression

accommodates well both B and D trigger type sub-samples.

The template expressions parameterizing the t-efficiency curves involve only terms of

the form of (5.26). These then render the integrations in t expressed in (5.20) and (5.23)

analytically feasible. The result of such calculations is explicitly included in Appendix .1.

The additional integration involving the κ-factor distribution necessary for the semileptonic

samples, both in the evaluation of the PDF (5.22) and its normalization (5.23), is performed

numerically, by discretizing the F(κ) distribution and summing over the corresponding bins.

5.4 Mass PDF

The likelihood description of the mass subspace provides important separation power among

the various signal and background components present in our samples.

For the nominal signal component, the width of the mass distribution is dominated by

the detector resolution. The corresponding PDF will be given by a Gaussian function, unit-

normalized in the fitting range (Mmin,Mmax),

G(m;M, σm,Mmin,Mmax) =
1√

2πσm
e−

1
2(

m−M
σm )

2

1

2

[
Erf

(
Mmax −M√

2σm

)
+ Erf

(
M −Mmin√

2σm

)] , (5.27)

with mean and width given by the fit parameters M and σm. The error function, Erf(z) ≡
2√
π

∫ z

0 e−u2
du, is used to express the normalization factor.

The combinatorial background is modeled through an empirical parameterization, as de-

termined from the mass side-band region. For the J/ψK and Dl samples, a linear model
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am + b is employed. Upon unit-normalization in the mass fitting region (Mmin,Mmax), it is

given by

A(m; a,Mmin,Mmax) = am+
1

Mmax −Mmin

[
1− a

2

(
M2

max −M2
min

)]
. (5.28)

For the Dπ modes an exponential shape is also found useful to model the combinatorial

shape,

B(m; b,Mmin,Mmax) =
be−bm

e−bMmin − e−bMmax
. (5.29)

In order to allow for a better determination of the background shape parameters, a prelimi-

nary fit is performed in an extended mass range.

B+ → J/ψK+

The nominal signal and combinatorial background are described by a Gaussian (5.27) and a

linear (5.28) model, respectively,

LJ/ψK
m (m|M, σm) = G(m;M, σm,Mmin,Mmax) ,

Lcomb
m (m) = A(m|a) .

The contribution of the Cabibbo-suppressed B+ → J/ψπ+ mode is fixed to 2.5% of the

totalB+ signal, and its mass shape is taken fromMonte Carlo simulation, being approximated

by a Landau distribution. The template is positioned relative to the mass fit parameter, M ,

and is otherwise forced to those values found from simulation,

LJ/ψπ
m (m|M) =

(
m−M + δJ/ψπ

)6
e

M−m−δJ/ψπ
b

a6b7 − e
M−Mmax−δJ/ψπ

b

[
a6b7 +

∑i=6
i=1 aib

i
(
Mmax −M + δJ/ψπ

)7−i
] ,

with $a ≡ (1, 5, 30, 120, 360, 720), δJ/ψπ = −3 MeV/c2, b = 9 MeV/c2.

B0 → J/ψK∗0

The description of the nominal signal and combinatorial background components is identical

to that of the previous decay.

Candidates formed with an incorrect (swapped) mass assignment to the kaon-pion pair

forming the K∗ meson amount to a fraction of 16.9% relative to the nominal signal. The

shape of its mass distribution is modeled by a Gaussian function centered at the nominal

signal mass, as determined from Monte Carlo simulation,

Lswap
m (m|M) = G(m;M, σswap,Mmin,Mmax) with σswap = 25 MeV/c2 .
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B+ → D̄0π+

The mass distribution for the nominal signal is better described by a pair of Gaussian func-

tions (5.27),

LDπ
m (m|M, σm) = (1− f)G(m;M, σm,Mmin,Mmax) + f G(m;M, rσm,Mmin,Mmax) ;

the factors f, r are found from a preliminary fit to the data performed in the wide mass

range.

The combinatorial background is described by the combination of a linear (5.28) and an

exponential (5.29) models,

Lcomb
m (m|b) = (1− f)A(m|a) + f B(m; b,Mmin,Mmax) ;

a flat a = 0 linear model is found to suffice. The relative fraction f of flat and exponential

components as well as the exponential decay parameter b are determined from the wide mass

range fit. Only the overall combinatorial background fraction is allowed to float in the narrow

mass range fit.

The mass template for the misreconstructed Cabibbo-suppressed B+ → D̄0K+ mode is

determined from Monte Carlo simulation. It is given by a Gaussian model whose width,

relative fraction and displacement with respect to the nominal signal peak are fixed from

simulation,

LDK
m (m|M) = G(m;M − δDK , σmDK ,Mmin,Mmax) ,

with δDK = 57 MeV/c2 and σmDK = 27 MeV/c2.

B0 → D−π+

The nominal signal is described by a double-Gaussian model as the previous mode, and the

combinatorial background by an exponential (5.29) model. A Gaussian model is used for the

Cabibbo-suppressed B0 → D−K+ decay, identically to what was done for the previous decay

mode.

The mass template LBs
m (m) for the misreconstructed Bs → D−

s π
+ (D−

s → K+K−π−)

background is obtained from Monte Carlo simulation, and is given by two Gaussian functions

centered at 5.315 GeV/c2, of widths 45 MeV/c2 and 22 MeV/c2 with fractions 81% and 19%,

respectively.

The misreconstructed Λ0
b → Λ+

c π
− (Λ+

c → p+K−π+) background decay is parameterized,

L
Λ0
b

m (m), as well from Monte Carlo simulation by an exponential of decay constant 76 MeV/c2

convoluted with a Gaussian of width 36 MeV/c2 and centered at 5.439 GeV/c2.
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B+ → D̄0π+π−π+, B0 → D−π+π−π+

The nominal signal and combinatorial background are described by single Gaussian (5.27)

and falling exponential (5.29) models, respectively. The Cabibbo-suppressed B → DKππ

decays are described by a Gaussian template whose width, displacement and fraction relative

to the nominal signal are all determined, and fixed, from Monte Carlo simulation.

B0 → D∗−π+

The mass of the nominal signal in D∗π is modeled with a single Gaussian (5.27) component,

while the Cabibbo-suppressed contribution fromD∗K is handled by another Gaussian defined

by parameters which are derived from signal Monte Carlo. The sole source of background

events is combinatorics, which are well described in mass by a single linear (5.28) component.

B0 → D∗−π+π−π+

The mass model is yet further simplified for the two modes with the D∗−(πππ)+ topology as

there is no Cabibbo-suppressed contribution to the B0 signal. The mass subspace is entirely

defined by a single Gaussian (5.27) peak on a linear (5.28) combinatorial background.

Bs → D−
s π+, Bs → D−

s π+π−π+

The nominal signals are described by a Gaussian function (5.27). The combinatorial back-

ground is modeled via the combination of a flat (5.28) and an exponential (5.29) distribution.

The Cabibbo-suppressed Bs → D−
s K

+ and Bs → D−
s K

+π−π+ decays are treated in an

identical fashion to the previous modes, via a Gaussian model fixed from Monte Carlo. The

shapes of the fully reconstructed Λ0
b and B0 mass peaks are similarly fixed to those found from

Monte Carlo. The same applies to the mass distributions from the partially reconstructed

B → D−
s πX background decays which are modeled with a Gaussian (5.27) and a linear (5.28)

function.

B+,0 → DlX

To model the D mass distribution associated with the signals, and the fakes and physics

background components we use a common double Gaussian distribution,

LDl
m (m|M, σm,1, σm,2) = (1− f)G(m;M, σm,1,Mmin,Mmax) + f G(m;M, σm,2,Mmin,Mmax) .

We assume a simple linear shape (5.28) for the mass distribution of the combinatorial

background.
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Bs → D−
s l+X

The description in mass space of all involved components – signal as well as combinatorial,

fakes, and physics backgrounds – is identical to that presented for the previous Dl samples.

5.5 Proper decay time PDF

The description of the proper decay time subspace involves the physics parameters which

we are primarily interested in extracting from the data. The B mesons lifetimes do appear

in the formalism developed in Section 5.2 for the signal components. The extraction of

such parameters requires additionally an appropriate description of the other contributing

components in the samples.

A background source common to all samples is that of the combinatorial type. Its de-

scription in the proper decay time space is found from the mass-sideband regions. A common

empirical model is employed, which is found to provide an effective description across the

data samples. It is first presented in a more general form, while its specific realizations for

the individual samples are addressed afterwards. It involves a linear combination of Gaus-

sian and smeared exponential terms. Terms of the latter form have been evaluated in (5.15).

These are more generally written as

Gα(t) ≡ G(t; σα,∆α) = δ(t−∆α)⊗G(t; σα) , (5.30)

Hα(t) ≡ H(t;λα, σα,∆α) = E(t−∆α;λα)⊗G(t; σα) . (5.31)

The model in its general form involves: one Gaussian term, one negatively and one positively

short-lived exponential component, and one positively long-lived exponential component; let

us refer to these by the subscripts ′o′, ′−′, ′+′, ′ + +′, respectively (0 < λ−,λ+ , λ++). The

resulting PDF may then be expressed as

Lcomb
t (t|σo,∆o, fo;λ−, σ−,∆−, f−;λ+, σ+,∆+, f+;λ++, σ++,∆++, f++)

= foGo(t) + f−H−(−t) + f+H+(t) + f++H++(t) , (5.32)

where fα∈{o,−,+,++} denote the relative fractions, with
∑

α fα = 1. Next we specify the

model realizations (and simplifications) which are applied to the individual samples, and

simultaneously attempt to motivate the above parameterization itself.

The description of the combinatorial background components in samples characterized by

an unbiased proper decay time distribution is of special importance. The J/ψK modes pro-

vide such class of unbiased samples, for which the proper time distribution is dominated by

a peak centered at t = 0. This is due to candidates constructed from tracks originating from
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the primary vertex, which for the current case mostly involve the combination of a prompt

J/ψ with prompt track(s). As the candidates forming this prompt component are character-

ized by zero proper time, its description is provided mathematically by a delta function, δ(t),

convoluted with the resolution function (5.14); i.e. it is of the form of (5.30). The remaining

sources of combinatorial background include: candidates involving tracks with erroneous hits,

or belonging in reality to different displaced vertices (short-lived); physics backgrounds not

explicitly accounted for, fake J/ψ from sequential semileptonic b → cµν → sµµνν decays,

or true displaced J/ψ paired with a random track (long-lived). The description of these

other sources is provided, in an effective fashion, by the short and long-lived components of

the form of (5.31). The combinatorial proper time PDF for the unbiased samples may be

summarized as

Lcomb
t (t|σt, St;λ−, f++;λ+, f+;λ++, f++) (5.33)

= foG(t;Stσt) + f−H−(−t) + f+H+(t) + f++H++(t) .

The displacement parameters are here taken to be zero, ∆α = 0, and instead of the fitting

parameters σα a common smearing resolution is used, which is determined for each event by

the corresponding measured t-uncertainty, σα = Stσt. The scaling factor St is a fit parameter.

As it was mentioned above, the prompt component formed of candidates with zero proper

time should be described by the resolution function (5.14). In fact, deviations observed in

the distribution of the data from this form must be due to an incorrect estimation of the t

resolution, σt. The model of (5.33) thus allows the determination of the necessary proper time

uncertainty scale factor from the fit to the data. Such correcting factor is propagated to the

full likelihood model, and in particular to the signal proper time PDFs derived in Section 5.2.

For the biased samples, provided by the hadronic and semileptonic modes, the model

of (5.32) is suitable with the following modifications. The trigger and candidate selection

criteria remove events with lower proper times. This bias therefore substantially removes

the negatively lived, H−, and prompt, Go, components. In effect, for the D(s)π(ππ) modes

a model without both such components is used, as it is found to describe data well. In

the combinatorial PDF used for the D(s)l modes a Gaussian component displaced from the

origin (∆o > 0) is found useful to describe the data, and the negatively lived term is again

not employed (f− = 0).

We re-emphasize that the prompt component is substantially removed in the case of

biased samples. This implies that the method for calibrating the proper time uncertainties

which was described for the J/ψK modes cannot be applied to these samples in the same

fashion. For the lifetime fits of the biased samples the t-uncertainties, which are inputs

to the fit, are scaled with the predetermined factors St. This issue is addressed further
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in Section 5.7, where we explain the details involved in determining and transferring these

necessary correcting factors which are particularly relevant for the study of Bs oscillations

performed in Chapter 8.

For the hadronic modes, the associated Cabibbo-suppressed channels share the same

proper time description as the nominal signal components. Generally, associated exclusive

backgrounds follow a model description provided by Monte Carlo simulation.

In the remainder of this section we describe the proper time PDFs of the additional

background components which pertain to each individual sample.

B+ → J/ψK+

The proper decay time distribution for the nominal signal is that obtained in (5.15) for fully

reconstructed, unbiased signal samples,

L(t|σt, St, τ) = E(t; τ)⊗G(t;Stσt) ; (5.34)

the scale factor St, as mentioned above, is introduced as a fit parameter. The Cabibbo-

suppressed B+ → J/ψπ+ component is described by a model identical to that of the signal,

with a lifetime forced to 1.01×τ as predicted from simulation. The PDF for the combinatorial

background is given in (5.33).

B0 → J/ψK∗0

The model description of the nominal signal and combinatorial background is identical to

that of the above charged mode. The proper time distribution of the K∗-swapped candidates

is negligibly different from that of correctly reconstructed candidates, and share thus in the

fit the same model as the nominal signal.

B+ → D̄0π+

The proper time PDF for the nominal signal has been obtained in (5.19) for the fully re-

constructed, biased samples. The Cabibbo-suppressed modes share the identical description.

That for the combinatorial background is realized by two positively lived components of the

form of (5.31), with a common displacement ∆bg and smearing resolution parameter σbg.

B0 → D−π+

In addition to that referred to the previous mode, the Λ0
b and B0

s backgrounds are modeled

from and fixed to Monte Carlo simulation via terms of the form of (5.31).
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B+ → D̄0π+π−π+, B0 → D−π+π−π+

The description employed for the nominal signal, as well as for the Cabibbo-suppressed

modes, is that given in (5.19) for the fully reconstructed, biased samples. The combinatorial

background, in the case of the B0 → D−π+π−π+ sample, is described by two independent,

smeared exponential terms – of the form of (5.31) –, while for the B+ → D̄0π+π−π+ sample

one single such term is found adequate.

B0 → D∗−π+

The nominal signal component in the t subspace is the standard expression derived for the

hadronic modes (5.19), which is shared as well by the Cabibbo-suppressed D∗K component.

The combinatorial background is fitted with two positively lived exponential tails. These tails

share a common offset from zero, ∆bg, and are smeared by a common Gaussian resolution

whose width, σbg, is also a fit parameter.

B0 → D∗−π+π−π+

The proper time distribution is modeled exactly as for B0 → D∗−π+.

Bs → D−
s π+, Bs → D−

s π+π−π+

The proper time PDF for the nominal signal is that obtained in (5.19) for the fully recon-

structed, biased samples. Such PDF is shared by the Cabibbo-suppressed modes. The same

is also true for the partially reconstructed Bs candidates entering in the fit region. A more

detailed analysis induces a κ-factor correction, analogous to that implemented for semilep-

tonic modes, which for events in the considered mass range is very close to unit, and is thus

neglected.

The shape of the combinatorial background is described by a single positively lived ex-

ponential component of the form of (5.31).

B+,0 → DlX

The reconstructed B signals in each of the three Dl samples involve both B+ and B0 meson

decays. Accordingly, the proper decay time PDF must be formed of the combination

LDl
t (t|σt, τu, τd) = fu · Lu

t (t|σt, τu) + fd · Ld
t (t|σt, τd) . (5.35)

Here τu and τd are the fit parameters, representing the B+ and the B0 meson lifetimes. The

PDF components Lu and Ld are of the form of (5.22) as derived for the partially reconstructed,
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biased samples. The involved t-efficiency functions and κ-factor distributions are derived

independently for the combination of B+ and of B0 channels. The relative fractions fu and

fd (fu+fd = 1) for the two components are computed from an inclusive Monte Carlo sample,

assuming the world average values [1] for the sample composition parameters, a summary

of which is provided in Table 4.16. The relative signal fraction fd of B0 mesons in the D0l,

D+l and D∗l samples is about 29%, 86%, and 90%. The difference between the electron and

muon samples is below 0.5%.

The combinatorial background is described by the general model expressed by (5.32)

with absent negatively lived component (f− = 0). A similar model is used for the prompt

component, which is composed of one Gaussian (5.30) and one smeared exponential (5.31)

term.

The physics backgrounds are described in an inclusive way by a Gaussian smeared expo-

nential term of the form of (5.31).

Bs → D−
s l+X

The likelihood model for describing the t distribution of the nominal Bs signal component

has been derived for the partially reconstructed modes and is expressed by (5.22).

Each physics background component is described by an independent t-PDF term of the

form of that used for the signal. The corresponding PDF (5.22) is formed using a κ-factor

distribution and a t-efficiency function which are derived from Monte Carlo simulation of the

associated B signal decay. The nominal values of the B+ and B0 lifetimes [1] replace the

Bs lifetime fit parameter when appropriate. The (pseudo) proper time t itself along with

its uncertainty are determined, according to (5.5) and (5.9), using the nominal mass of the

involved B meson.

5.6 Fitting procedure and results

In this section we present in further detail the procedure for performing the simultaneous

mass and proper decay time fits to the data samples based on the models described previously,

together with the extracted results.

The likelihood factors modeling the mass Lm and proper decay time Lt for the individual

samples components have been presented in the Sections 5.4 and 5.5 above. Additionally,

the proper decay time uncertainty likelihood factor Lσt is constructed. As discussed in Sec-

tion 5.1.3, two such distributions are obtained for each mode, from the mass-sideband and

signal (mass-sideband subtracted) regions, which are respectively associated to the combina-

torial and to the remaining sample components.
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Before fitting the data samples, the necessary Monte Carlo quantities and templates are

computed and implemented in the fitting framework for each individual mode. These may

involve t-efficiency functions (Section 5.3.1), κ-factor distributions (Section 5.3.2), and certain

sample composition parameters and templates (Section 4.3).

In general, the fit to the data proceeds in several steps. The results of the fitted parameters

obtained at each step are used to set the initial values, constrain or fix the parameter values for

the following step. Combinatorial background parameters are inferred first. This is usually

accomplished by fitting candidates which belong to the mass-sideband regions, in which case

solely the combinatorial background model is employed. For the Dπ(ππ) samples, due to

the structures that populate the lower mass-sideband region to the left of the signal peak,

a preliminary fit is performed in an extended mass region, as in Section 4.3.2. In the Dl

samples, information about further background sources is extracted from additional data

samples, formed of selected fake candidates, as described in Section 4.3.3. In the final stages

of the procedure, the fit is performed in the full signal region. The description of backgrounds

may be relaxed as appropriate. The main parameters of interest, i.e. the B mesons lifetimes,

are then finally extracted.

The correction to the proper time uncertainty is obtained directly from the fit in the

case of the J/ψK decay modes. It corresponds to the parameter St introduced in (5.33).

As mentioned before, these samples have a prominent prompt background component whose

width readily allows for the determination of this parameter. That is not the case for the

remaining samples, where such prompt components are highly suppressed by trigger and

reconstruction requirements. For the B+ and B0 modes reconstructed in all Dπ(ππ) and

Dl samples, a common correcting factor (5.10) is used. A value of 1.4 is employed, which is

based on the results obtained from the mentioned J/ψK fit and according to average results

also obtained in Section 5.7. While for the case of the B+ and B0 mesons the usage of a

single numerical value is sufficient, for the Bs case a more detailed scale factor evaluation

is necessary. For the Bs samples a scale factor is inferred for each candidate, according to

the procedure explained in Section 5.7. The proper time uncertainties are thus scaled before

being provided as input to the fit.

5.6.1 Fully reconstructed decays

All parameters of the fit model for the J/ψK modes are determined directly and at once

from the fit to the data except for the amount and the shape of the Cabibbo-suppressed and

K∗0 swapped contributions. The fit results for these samples are shown in Table 5.4, and the

fit projections are found in Figures 5.7 and 5.8.



Matter Antimatter Fluctuations, N. Leonardo ! monograph excerpt ! 23

In the case of the Dπ(ππ) modes, combinatorial background mass parameters are pre-

determined in a wide-range mass-only fit (Section 4.3.2). Among these only the overall

combinatorial fraction is left floating in the nominal, narrow mass-range fit. The shape of

the double-Gaussian model used in mass space to describe the signal peak in the Dπ modes is

also determined in such wide-range mass fit. No such preliminary fit is necessary in the case of

the D∗π(ππ) modes for adjusting the simpler flat combinatorial mass model. The associated

t-space parameters are then found from the fit to the candidates in the upper mass-sideband

region. The relative fractions of the Cabibbo-suppressed and partially reconstructed decays

are shown in Tables 4.10 and 4.9. These fractions along with the corresponding templates

are determined from Monte Carlo simulation (Section 4.3). The fit projections are shown in

Figures 5.9–5.21, and the numerical results are listed in Tables 5.5–5.8.

The B meson lifetimes as measured in the fully reconstructed modes are summarized

in Table 5.2.

sample cτ [µm]

B+ → J/ψK+ 499.4±8.0

B+ → D̄0π+ 494.5±8.1

B+ → D̄0π± 470.4±18.1

(combined B+ fit 495.0±5.2)

B0 → J/ψK∗0 458.4±11.0

B0 → D−π+ 475.7±8.1

B0 → D−π+π−π+ 458.4±11.5

B0 → D∗−π+ (D̄0 → K+π− ) 495.3±22.4

B0 → D∗−π+ (D̄0 → K+π−π+π− ) 449.7±19.6

B0 → D∗−π+π−π+ (D̄0 → K+π− ) 449.3±21.0

B0 → D∗−π+π−π+ (D̄0 → K+π−π+π−) 489.5±24.0

(combined B0 fit 468.1±4.8)

Bs → D−
s π

+, Ds → φπ 464.76±27.81

Bs → D−
s π

+, Ds → K∗K 464.91±41.41

Bs → D−
s π

+, Ds → 3π 417.89±58.15

Bs → D−
s π

+π−π+, Ds → φπ 590.38±89.30

Bs → D−
s π

+π−π+, Ds → K∗K 514.07±106.39

(combined Bs fit 472.73±21.08)

Table 5.2: Summary of measured B lifetimes in fully reconstructed modes.
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5.6.2 Partially reconstructed decays

For the semileptonic samples, the mass and the proper decay time models for the combina-

torial background are adjusted by fitting candidates in the D mass-sideband regions. This is

illustrated in Figure 5.5 for a selected sub-sample. The corresponding fraction is determined

from the fit to the full signal mass region.

The relative fractions of the physics background are determined from Monte Carlo sim-

ulation and are summarized in Table 4.14 for all 24 semileptonic decay sub-samples. They

are fixed parameters in the fit. Except in the case of the Dsl samples, for which a signal-like

treatment was adopted, a fixed, inclusive t template derived from Monte Carlo simulation

is used to describe the proper decay time for the physics background component of each

sub-sample. This is illustrated in Figure 5.5 for a selected sub-sample.

The description of the fakes background component is obtained from a preliminary fit

to the fake lepton sample, as addressed in Section 4.3.3. This sample is sufficiently large to

allow for the determination of the proper decay time distribution of the fakes background.

Fit projections are shown in Figure 5.6. The relative fraction of this component is extracted

from yet another preliminary fit, namely to the mass distribution of the Dl candidates, mDl.

The procedure is thoroughly explained in Section 4.3.3. The numerical values of the fractions

are summarized in Table 4.15. The characterization of the fakes background is fixed in the

nominal lifetime fit. We note that the ability for background characterization carried by

the Dl mass distributions, which was here used through a separate fit, could in principle be

optimally exploited in a simultaneous fit. That is, by including mDl of the candidates as an

additional input together with the corresponding likelihood factor.

For the D0l, D+l, D∗l final states, all 12 decay sub-samples are fitted simultaneously.

A different set of parameters is allocated for each of the sub-samples being fit, with the B+

and the B0 lifetimes as the only common parameters. The fit likelihood projections in the

mass and pseudo proper decay time spaces are shown in Figures 5.22–5.33. The 12 decay Dsl

sub-samples are fitted individually. The fit projections are displayed in Figures 5.34–5.45.

The B meson lifetimes as measured in the partially reconstructed modes are summarized

in Table 5.3.
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Figure 5.5: Proper decay time distribution of combinatorial (left) and physics (right) back-

grounds, for the µD+ B trigger sub-sample.
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trigger sub-sample.
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eD0 B 489.55±4.66 – eDs(φπ−) B 460.6 ± 14.7

µD0 D 504.46±7.42 – µDs(φπ−) D 471.2 ± 21.3

eD0 D 502.63±9.62 – eDs(φπ−) D 422.3 ± 25.8

µD+ B – 465.81± 4.36 µDs(K∗0K−) B 437.9 ± 23.6

eD+ B – 462.82± 5.34 eDs(K∗0K−) B 402.6 ± 27.9

µD+ D – 475.31± 7.38 µDs(K∗0K−) D 445.6 ± 32.3

eD+ D – 460.31± 9.26 eDs(K∗0K−) D 444.9 ± 45.7

µD∗ B – 476.97± 7.25 µDs(π+π−π−) B 392.2 ± 28.1

eD∗ B – 468.35±10.41 eDs(π+π−π−) B 409.4 ± 35.8

µD∗ D – 459.31±12.62 µDs(π+π−π−) D 480.0 ± 43.1

eD∗ D – 448.24±16.41 eDs(π+π−π−) D 420.6 ± 45.4

average 496.60±2.62 466.68± 2.53 average 441.14 ± 6.41

Table 5.3: Summary of measured B lifetimes in partially reconstructed modes; in the fits to

the individual sub-samples the lifetime of a single B species is fitted, while those of the other

present B mesons are fixed to their world average values [1].



Matter Antimatter Fluctuations, N. Leonardo ! monograph excerpt ! 27

parameter B+ → J/ψK+ B0 → J/ψK∗0

M [MeV/c2] 5279.0 ± 0.2 5279.4 ± 0.3

σ [MeV/c2] 12.8 ± 0.2 10.7 ± 0.3

fbg 0.894 ± 0.002 0.863 ± 0.003

a -1.09 ± 0.35 -1.78 ± 0.61

cτ [µm] 499.4 ± 8.0 458.4 ± 11.1

Sct 1.334 ± 0.007 1.376 ± 0.013

f+ 0.061 ± 0.004 0.069 ± 0.007

f++ 0.021 ± 0.002 0.036 ± 0.006

f− 0.012 ± 0.001 0.013 ± 0.002

cτ+ [µm] 79.0 ± 7.5 80.0 ± 12.6

cτ++ [µm] 448.5 ± 36.6 415.2 ± 40.7

cτ− [µm] 138.4 ± 10.3 130.0 ± 16.0

Table 5.4: Mass and proper decay time fit results for J/ψK modes.
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parameter B+ → D̄0π+ B0 → D−π+

M [MeV/c2] 5278.3 ± 0.2 5278.6 ± 0.3

σ [MeV/c2] 16.5 ± 0.2 16.2 ± 0.3

fbg 0.390 ± 0.005 0.324 ± 0.007

cτ [µm] 494.5 ± 8.1 475.7 ± 8.1

f++ 0.800 ± 0.083 0.226 ± 0.613

cτ+ [µm] 477.2 ± 63.3 227.8 ± 39.8

cτ++ [µm] 208.5 ± 15.7 384.1 ± 149.6

∆bg [µm] 178.2 ± 3.0 205.9 ± 4.1

σbg [µm] 50.4 ± 2.1 55.5 ± 3.0

Table 5.5: Mass and proper decay time fit results for Dπ modes.

parameter B0 → D−π+π−π+ B+ → D̄0π+π−π+

M [MeV/c2] 5278.5 ± 0.4 5277.9 ± 0.5

σ [MeV/c2] 14.2 ± 0.4 13.9 ± 0.5

fbg 0.861 ± 0.004 0.527 ± 0.014

b [GeV/c2] 1.330 ± 0.061 2.856 ± 0.261

cτ [µm] 458.4 ± 11.5 470.4 ± 18.1

cτ+ [µm] 436.2 ± 21.4 505.3 ± 15.2

∆+ [µm] 203.7 ± 7.8 268.5 ± 7.9

σ+ [µm] 37.7 ± 4.3 75.2 ± 6.6

f++ 0.622 ± 0.089 —

cτ++ [µm] 281.8 ± 11.8 —

∆++ [µm] 295.3 ± 9.3 —

σ++ [µm] 68.0 ± 3.1 —

Table 5.6: Mass and proper decay time fit results for Dπππ modes.
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parameter D0 → Kπ D0 → Kπππ

M [MeV/c2] 5278.1 ± 0.6 5279.3 ± 0.7

σ [MeV/c2] 18.2 ± 0.6 17.8 ± 0.6

fbg 0.387 ± 0.016 0.299 ± 0.018

slope[GeV/c2−1] -2.85 ± 0.96 -4.51 ± 1.33

cτ [µm] 495.3 ± 22.4 449.7 ± 19.6

f++ 0.047 ± 0.040 0.052 ± 0.051

cτ+ [µm] 221.9 ± 17.5 241.2 ± 25.7

cτ++ [µm] 970.6 ± 386.0 1104.1 ± 509.9

∆bg [µm] 100.3 ± 4.3 81.1 ± 5.3

σbg [µm] 24.7 ± 3.5 22.2 ± 4.3

Table 5.7: Mass and proper decay time fit results for B0 → D∗−π+ modes, fitted separately

by D0 decay channel.

parameter D0 → Kπ D0 → Kπππ

M [MeV/c2] 5277.9 ± 0.7 5277.4 ± 0.7

σ [MeV/c2] 15.5 ± 0.7 14.6 ± 0.7

fbg 0.726 ± 0.011 0.676 ± 0.014

slope[GeV/c2−1] -3.29 ± 0.44 -3.36 ± 0.56

cτ [µm] 449.3 ± 21.0 489.5 ± 24.0

f++ 0.088 ± 0.073 0.468 ± 0.274

cτ+ [µm] 206.3 ± 13.5 181.5 ± 46.5

cτ++ [µm] 496.3 ± 134.8 359.1 ± 63.8

∆bg [µm] 152.0 ± 2.9 141.3 ± 3.7

σbg [µm] 37.3 ± 2.3 29.9 ± 2.8

Table 5.8: Mass and proper decay time fit results for B0 → D∗−(πππ)+ modes, fitted sepa-

rately by D0 decay channel.
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parameter Bs → D−
s π

+ channels

D−
s → φπ− D−

s → K∗0K− D−
s → π−π+π−

m [GeV/c2] 5.365272± 0.001206 5.369043± 0.001358 5.367352± 0.000037

σ [GeV/c2] 0.021013± 0.001195 0.016042± 0.001234 0.021484± 0.002567

fbg 0.436024± 0.019620 0.517976± 0.029545 0.728162± 0.029775

τbg [GeV/c2] 0.436343± 0.118268 2.439732± 0.183415 1.468729± 0.145326

f lin
bg [GeV/c2] — 0.498256± 0.163246 —

cτ [cm] 0.046476± 0.002781 0.046491± 0.004141 0.041789± 0.005815

backgr. cτ [cm] 0.019139± 0.001303 0.022452± 0.001757 0.019421± 0.001425

backgr. offset[cm] 0.012299± 0.000738 0.014345± 0.000837 0.019063± 0.000819

backgr. σ [cm] 0.003431± 0.000644 0.003639± 0.000706 0.004524± 0.000664

Table 5.9: Mass and proper decay time fit results for Bs → D−
s π

+ modes.

parameter Bs → D−
s π

+π−π+ channels

D−
s → φπ− D−

s → K∗0K−

m [GeV/c2] 5.368652± 0.000002 5.368372± 0.001627

σ [GeV/c2] 0.013856± 0.001497 —

fbg 0.844878± 0.015780 0.857557± 0.026283

τbg [GeV/c2] 1.138907± 0.085058 1.359105± 0.124292

cτ [cm] 0.059038± 0.008930 0.049950± 0.002930

backgr. cτ [cm] 0.046073± 0.001930 0.051407± 0.010639

backgr. offset[cm] 0.026917± 0.001065 0.033521± 0.001842

backgr. σ [cm] 0.007232± 0.000944 0.010109± 0.001550

Table 5.10: Mass and proper decay time fit results for Bs → D−
s π

+π−π+ modes.
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Figure 5.7: Mass and proper decay time fit projections for B+ → J/ψK+ decay.
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Figure 5.8: Mass and proper decay time fit projections for B0 → J/ψK∗0 decay.



32 ! monograph excerpt ! Matter Antimatter Fluctuations, N. Leonardo

2
Ca

nd
id

at
es

 p
er

 6
 M

eV
/c

0

500

1000

 data
 fit

 background

 / NDF = 73.20 / 66, Prob = 25.38%2

]2] mass [GeV/c2 mass [GeV/c
5.2 5.3 5.4 5.5 5.6da

ta
 - 

fit
 / 

er
ro

r

-1
0
1
2
3

m
µ

Ca
nd

id
at

es
 p

er
 2

5 

1

10

10
2

10
3  data

 fit

 / NDF = 68.94 / 62, Prob = 25.44%2

proper time [cm]
-0.1 0 0.1 0.2 0.3 0.4da

ta
 - 

fit
 / 

er
ro

r

-4

-2

0

2

Figure 5.9: Mass and proper decay time fit projections for B+ → D̄0π+ decay.
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Figure 5.10: Mass and proper decay time fit projections for B0 → D−π+ decay.
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Figure 5.11: Mass and proper decay time fit projections for the B+ → D̄0π+π−π+ decay.
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Figure 5.12: Mass and proper decay time fit projections for the B0 → D−π+π−π+ decay.
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Figure 5.13: Mass and proper decay time fit projections for B0 → D∗−π+, with D0 → Kπ.
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Figure 5.14: Mass and proper decay time fit projections for B0 → D∗−π+, withD0 → Kπππ.
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Figure 5.15: Mass and proper decay time fit projections for B0 → D∗−(πππ)+, with D0 →
Kπ.
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Figure 5.16: Mass and proper decay time fit projections for B0 → D∗−(πππ)+, with D0 →
Kπππ.
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Figure 5.17: Mass and proper decay time fit projections for Bs → D−
s π

+ with D−
s → φπ−.
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Figure 5.18: Mass and proper decay time fit projections for Bs → D−
s π

+ with D−
s → K∗0K−.
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Figure 5.19: Mass and proper decay time fit projections for Bs → D−
s π

+ with D−
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π−π+π−.



38 ! monograph excerpt ! Matter Antimatter Fluctuations, N. Leonardo

]2 mass [GeV/cB  3-) - K+(K
5.4 5.6 5.8

2
Ca

nd
id

at
es

 p
er

 8
 M

eV
/c

0

20

40

 data
 fit

 3s D s B
 reflections
 background

 3- D 0 B
 3c  b 

]2 mass [GeV/cB  3-) - K+(K
5.4 5.6 5.8

 / NDF = 22.06 / 34, Prob = 94.29%, K-Prob = 100.00%2

proper time [cm]
0 0.2 0.4

mµ
Ca

nd
id

at
es

 p
er

 3
0 

1

10

10
2

 data

 fit
 3s D s B

 reflections

 background

 3- D 0 B

proper time [cm]
0 0.2 0.4

 / NDF = 26.64 / 30, Prob = 64.19%, K-Prob = 95.86%2

Figure 5.20: Mass and proper decay time fit projections for Bs → D−
s π

+π−π+ with D−
s →

φπ−.
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Figure 5.21: Mass and proper decay time fit projections for Bs → D−
s π

+π−π+ with D−
s →

K∗0K−.
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Figure 5.22: Mass and proper decay time fit projections for µD0 B trigger.
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Figure 5.23: Mass and proper decay time fit projections for µD0 D trigger.
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Figure 5.24: Mass and proper decay time fit projections for eD0 B trigger.
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Figure 5.25: Mass and proper decay time fit projections for eD0 D trigger.
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Figure 5.26: Mass and proper decay time fit projections for µD+ B trigger.
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Figure 5.27: Mass and proper decay time fit projections for µD+ D trigger.
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Figure 5.28: Mass and proper decay time fit projections for eD+ B trigger.
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Figure 5.29: Mass and proper decay time fit projections for eD+ D trigger.
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Figure 5.30: Mass and proper decay time fit projections for µD∗ B trigger.
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Figure 5.31: Mass and proper decay time fit projections for µD∗ D trigger.
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Figure 5.32: Mass and proper decay time fit projections for eD∗ B trigger.
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Figure 5.33: Mass and proper decay time fit projections for eD∗ D trigger.
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Figure 5.34: Mass and proper decay time fit projections for µ+D−
s B trigger with D−

s → φπ−.
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Figure 5.35: Mass and proper decay time fit projections for µ+D−
s D trigger withD−

s → φπ−.
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Figure 5.36: Mass and proper decay time fit projections for e+D−
s B trigger with D−

s → φπ−.
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Figure 5.37: Mass and proper decay time fit projections for e+D−
s D trigger with D−

s → φπ−.
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Figure 5.38: Mass and proper decay time fit projections for µ+D−
s B trigger with D−

s →
K∗0K−.
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Figure 5.39: Mass and proper decay time fit projections for µ+D−
s D trigger with D−

s →
K∗0K−.
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Figure 5.40: Mass and proper decay time fit projections for e+D−
s B trigger with D−

s →
K∗0K−.
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Figure 5.41: Mass and proper decay time fit projections for e+D−
s D trigger with D−

s →
K∗0K−.
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Figure 5.42: Mass and proper decay time fit projections for µ+D−
s B trigger with D−

s →
π+π−π−.
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Figure 5.43: Mass and proper decay time fit projections for µ+D−
s D trigger with D−

s →
π+π−π−.
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Figure 5.44: Mass and proper decay time fit projections for e+D−
s B trigger with D−

s →
π+π−π−.
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Figure 5.45: Mass and proper decay time fit projections for e+D−
s D trigger with D−

s →
π+π−π−.
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5.7 Calibration of proper time resolution

The accurate estimation of the t resolution is relevant for ensuring a precise description of

the signal proper decay time distribution. It directly enters the signal PDFs. This effect

becomes more conspicuously mattering in the study of t-dependent oscillations, in particular

when probing high oscillation frequencies and for establishing reliable exclusion regions.

Corrections to the proper decay time uncertainty are parameterized through a scale factor

St as introduced in Section 5.1.2. This factor is extracted from the data directly, namely

by adjusting the width of a prompt Gaussian component describing the t distribution of

combinatorial background events. This was in effect the procedure employed for the J/ψK

samples where the parameter St is part of the fitting procedure, as expressed in (5.33), being

determined predominantly from the mass-sidebands which contain a large fraction of prompt

events. For the other samples, however, which are affected by the SVT trigger requirements,

such prompt component is greatly reduced, and the σt scale factor cannot thus be determined

concurrently with the fit in the exact same fashion described for the t-unbiased samples.

An alternative, more detailed approach is put forth for estimating corrections to the

proper time uncertainties for the t-biased samples. It is based on a calibration sample de-

signed to be predominantly prompt in decay time and also sharing topological and kinematic

attributes with those B decay signal samples. With such a sample at hand, the same fit-

ting framework and techniques which were described earlier in this chapter are applied to

extract the scale factor values from the fit to the prompt peak. The additional background

components of the sample are also described in the fit.

As already mentioned, the effect of these corrections is more determining for the study

of Bs oscillations. To further facilitate the transfer of the scale factor from the calibration

sample to the Bs samples its dependence on various topological and kinematical quantities

is parameterized. For the Bs case therefore per-event corrections are derived based on those

parameterizations. For simplicity, for the t-biased B+ and B0 samples a common value is

derived. The proper time uncertainties σt, which are part of the fit input, are then re-scaled

as described in (5.10) before the data is passed on to the fitter.

Calibration sample

The main intended characteristic of the calibration sample is that it be prompt – that is,

it should contain B-like vertex candidates which are expected to coincide with the primary

vertex of the pp̄ interaction. This is accomplished by removing any requirements on impact

parameter or transverse decay length which would bias or sculpt the distribution in proper

decay time. Additionally, it should mimic as closely as possible the kinematics and vertex
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topology of the t-biased signal samples – B → Dπ(ππ) and B → DlX .

The same two displaced tracks trigger dataset, from which the signal samples are ex-

tracted, is used. The method of reconstruction for the vertex candidates is to pair a real

D meson with a prompt track (or three prompt tracks, depending on the channel topology)

at the primary vertex. Both trigger tracks are required to be from the D meson and not

the prompt track(s) with which it is paired. Cuts similar to those used for selecting the

B samples are used, in order to have similar sample kinematics from the start. Tight cuts

are also imposed on the D candidates to further maximize their signal content. Selection

requirements are compiled in Table 5.11.

Dπ Dπππ

χ2
rφ(Dπ(ππ)) < 15 15

|mD −MD| [MeV/c2] < 8 8

mDπ(ππ) [GeV/c2] [5.4, 6.0] [5.4, 5.8]

mπππ [GeV/c2] < — 1.75

pT (Dπ(ππ)) [GeV/c] > 5.5 6.0

pT (π) [GeV/c] > 1.2 —

|d0(D)| [µm] < 100 100

Table 5.11: Selection requirements for σt calibration sample.

The resulting calibration sample is larger than the corresponding hadronic Bs samples by

a factor of ∼ 500 for the Dπ topology and ∼ 100 for the Dπππ topology.

Global fit

A fit is performed to the proper decay time distribution of the sample. No distinguishing

structures exist in mass space between the components of the sample, and the likelihood

is given by the t-PDF only. The latter corresponds to a model similar to that used for

parameterizing the combinatorial background in t-unbiased samples given by (5.33). The

dominant component is, as designed, given by a prompt Gaussian. It is formed of events

containing a real, prompt D meson and one (three) prompt track(s). In addition, there

is a smaller contribution [75] from secondary D mesons originating from B decays, mis-

reconstructed D mesons, and tracks not originating from the primary vertex. These are

described by negatively and positively lived exponential tails of the form of (5.31). More

specifically, and in addition to the prompt component, the Dπ topologies are found to be

best fitted with one long lived and one short lived exponential tail pair symmetric about zero,
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Figure 5.46: Representative t distributions and fit projections for the Dπ (left) and Dπππ

(right) topologies.

while for the Dπππ topologies a single asymmetric exponential tail pair is found to form an

adequate model. Representative t distributions and associated fit projections for the Dπ and

Dπππ topologies are shown in Figure 5.46.

The components just described which make up the PDF correspond to a delta func-

tion (5.30) and exponential (5.31) functions, convoluted with a Gaussian resolution function,

G(t;Stσt), whose width is given by the candidate’s measured t uncertainty multiplied by

the scale factor, St. The latter, which is common to all PDF terms, is the fit parameter of

interest. Table 5.12 lists the scale factor fit results for the total sample. These corroborate

the value of 1.4 which was chosen as the common scale factor value to be used for all B+ and

B0 t-biased samples.

topology N St

Dπ 338000 1.406 ± 0.003

Dπππ 35500 1.492 ± 0.008

Table 5.12: Total sample sizeN and fitted scale factor St for the calibration sample topologies;

uncertainties are statistical only.
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Scale factor dependencies and tuning

We now pursue a parameterization of the scale factor based on a set of variables on which it is

observed to have dependence. These dependences are then used to estimate the scale factors

for the signal samples on a per-event basis. The motivation for doing so is two-fold. It allows

for a more systematic and proper transfer between the calibration and the signal samples,

by effectively taking into account relative kinematical differences. Additionally, by scaling

the measured proper time resolution by different values, candidates with good resolution

are identified and used to the fullest extent, while candidates with poorer resolution are

de-weighted in the smearing (5.14) of the signal PDF.

Due to its large size, the calibration sample can be binned in different variables and

examined for the dependences of St. The following set of variables characterizing the Dπ(ππ)

system is employed in the parameterization:

• angular distance (between the D and the pion(s)), ∆R,

• isolation, I = pT (Dπ(ππ))/
∑

i p
i
T (∆R < 0.7),

• pseudo rapidity, η,

• beamline axis position, z,

• chi-square of the vertex fit in the transverse plane, χ2.

Figure 5.47 overlays the distributions of the calibration sample and the sideband-subtracted

signal samples Bs → Dπ/l, for the selected variables. The disagreements in these distribu-

tions are not of concern, precisely because the respective dependences of St are parameter-

ized (Figure 5.48). Rather, the important consideration here is that the calibration sample

covers the phase space of the signal samples.

The scale factor parameterization is implemented by factorizing the dependence on the

various variables, that is

St(∆R, I, η, z,χ2) = f∆R · fI · fη · fz · fχ2 , (5.36)

where the various f denote polynomial functions (in fact, parabolas) obtained by fitting the

dependence on the individual quantities as illustrated in Figure 5.48. The polynomial param-

eters are adjusted in an iterative fashion. That is, the scale factor variation with respect to

one quantity is first fitted and corrected for, and then the correction for a succeeding variable

is extracted and applied. The pattern is continued until the parameterized scale factor pro-

duces a reasonably constant behavior close to unit. This is illustrated in Figure 5.48 where
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Figure 5.47: Comparison of the calibration sample (black line) and sideband-subtracted

Bs → Dsπ/l distributions of variables from hadronic (blue) and semileptonic (red) samples,

for the variables χ2(B) (left) and isolation (right). Distributions are scaled to facilitate

comparison.

the original dependence patent on the leftmost plot is absorbed once the parameterization is

applied as it is seen in the rightmost plot.

It is the tuned parameterization achieved in (5.36) that is used to scale the proper time

uncertainties (5.10), according to the individual candidates’ characteristics, in the case of

the Bs signal samples. In Table 5.13 we summarize the average of the corrections to σt

implemented in the various hadronic Bs modes.

Bs → D−
s π

+, Ds → φπ 1.44137

Bs → D−
s π

+, Ds → K∗K 1.39889

Bs → D−
s π

+, Ds → πππ 1.37909

Bs → D−
s π

+π−π+, Ds → φπ 1.39659

Bs → D−
s π

+π−π+, Ds → K∗K 1.39722

Table 5.13: Average correction factors to σct for different Bs modes.

Systematic uncertainties

Systematic aspects associated to the method employed for deriving the corrections to the

proper time uncertainties are now addressed. Foremost, we intend to ensure that the achieved
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Figure 5.48: Scale factor dependence before (left) and after (right) parameterization, illus-

trated for the χ2 vertex fit in the Dπ topology.

corrections are not incorrectly favorable when establishing exclusion conditions for the oscil-

lation frequency. Hence only an upper bound on the scale factor is measured.

The following systematic sources are considered.

D background content: The likelihood model used for fitting the calibration sample

employs several simplifications. A main assumption in this respect is that the D candidates

are purely signal, in view of the tight D selection requirements, and no modeling of combi-

natorial D background is thus included. To evaluate the effect of this model simplification

we increase, by approximately two times, the level of background acceptance in the sample

by doubling the width of the D mass cut window. We then determine the shift in the fitted

average scale factor values on this background-enriched sample.

D impact parameter requirement: The requirement on the D impact parameter is

used to select candidates whose momentum points to the primary vertex. This may bias the

vertex calibration by preferentially rejecting badly measured events which could have large

scale factors. To evaluate this effect the impact parameter selection requirement is varied by

20 µm around the nominal 100 µm cut, and the modified samples are fitted for the average

residual scale factors.

Transferred parameterization: The scale factor parameterization is to be applied to

the various Bs signal modes. While it is derived in a calibration sample involving only D−

candidates, those target Bs samples are based on distinct Ds topologies. Other calibration

topologies were designed, including Dsπ, D0π, and additional Dπππ modes. The systematic



Matter Antimatter Fluctuations, N. Leonardo ! monograph excerpt ! 57

uncertainty associated with the transfer of scale factors between different D decay topologies

is evaluated by fitting for the average scale factors in the various samples with interchanged

parameterizations; the largest observed deviation from unit is taken as the uncertainty.

Tuning residuals: The tuning procedure employs a limited number of variables while

there may be others on which the scale factor also depends. The assumption was also made

that the dependences completely factorize. The effect of such incompleteness of the tuning

procedure is small and limited to the level of the residual deviations from the average fitted

scale factor. These are taken as the dominant relative systematic uncertainty source. The

relative systematic uncertainties evaluated for each source are shown in Table 5.14.

systematic source relative uncertainty [%]

D background < 1.0

D impact parameter ≤ 1.0

transferred parameterization 3.5

tuning residuals 4.0

total assigned 6.0

Table 5.14: Contributions to the σt scale factor systematic uncertainty.

5.8 Résumé

The unbinned fitting framework and associated likelihood description of the data samples in

mass and proper decay time spaces in the absence of flavor tagging information have been

presented.

The quantities of central interest for this dissertation are associated directly to the de-

scription of the proper decay time of the reconstructed B meson signals in the data samples.

The discrimination of these signals from the various other components which constitute the

samples chiefly benefits from the characterization of the involved mass distributions. The fits

of the data are accordingly performed based on input information from both proper time and

mass spaces in a concurring fashion. This input data is moreover provided for the individual

B mesons candidates, thus following an unbinned approach, which maximizes the usage of

the available information extracted from the data samples.

The components which contribute to the data samples were identified in Chapter 4. Each

of these components is modelled in the spaces of the input quantities to the likelihood func-

tion. The characterization of background contributions of the combinatorial type is inferred

from mass-sideband regions, while that of backgrounds of the physics type, originating from
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non-signal b-hadron decays, readily benefits from expected templates found from Monte Carlo

simulation of those processes. The B signals are recognized in mass space as Gaussian peaks

whose widths are determined by the detector resolution.

The B mesons lifetimes, here the main parameters of interest, are part of the proper decay

time probability density functions for signal components. Analysis methods are developed

in order to give necessary account of effects coming from trigger and selection requirements,

and partial reconstruction which characterize the data samples. Analytical techniques are

further examined and implemented that result in an optimization of speed and accuracy of

the fitting process.

The measured B meson lifetimes are summarized (uncertainties are statistical only):

lifetime, τ [ps]

B+ 1.654±0.008

B0 1.557±0.007

Bs 1.479±0.020

These are found to be in good agreement with the world average values [1] —1.670 ± 0.017 ps

(B+), 1.535 ± 0.014 ps (B0), 1.460 ± 0.057 ps (Bs). The statistical precision achieved

is competitive with those averages. Preliminary evaluation of the systematic uncertainties

performed in previous iterations of the analysis estimate less than 4% relative systematic

uncertainty contributions.

The issue of proper time uncertainty calibration, of particular relevance for the study of

Bs oscillations, is also thoroughly addressed.

The fitting framework here described further provides the underlying structure for the

study of neutral B meson mixing once treatment of flavor information is incorporated. This

information is acquired by applying to the data samples flavor tagging techniques. Such are

the matters to be explored in the ensuing chapters.


